Coursera
  • 在线学位探索学士学位和硕士学位
  • MasterTrack™获得硕士学位的学分
  • 大学证书通过研究生水平的学习,开拓您的职业生涯
寻找职业企业版面向大学
  • 浏览
  • 顶级课程
  • 登录
  • 免费加入
    Coursera
    • 浏览
    • Statistics For Data Science

    筛选依据

    ''statistics for data science'的 1334 个结果

    • 免费

      Placeholder
      Stanford University

      Introduction to Statistics

      您将获得的技能: Data Science, General Statistics, Probability & Statistics, Statistical Tests, Estimation, Basic Descriptive Statistics, Correlation And Dependence, Probability Distribution, Regression, Bayesian Statistics, Data Analysis, Data Visualization, Econometrics, Experiment, Machine Learning, Markov Model, Plot (Graphics), Statistical Analysis, Statistical Visualization

      4.5

      (2k 条评论)

      Beginner · Course · 1-3 Months

    • Placeholder
      University of Michigan

      Statistics with Python

      您将获得的技能: Probability & Statistics, General Statistics, Statistical Programming, Python Programming, Data Science, Business Analysis, Regression, Computer Programming, Data Analysis, Statistical Analysis, Statistical Tests, Experiment, Econometrics, Machine Learning, Machine Learning Algorithms, Data Visualization, Statistical Visualization, Bayesian Statistics, Correlation And Dependence, Data Analysis Software, Estimation, Basic Descriptive Statistics, Mathematics, Plot (Graphics), Programming Principles

      4.6

      (3k 条评论)

      Beginner · Specialization · 1-3 Months

    • Placeholder
      Johns Hopkins University

      Advanced Statistics for Data Science

      您将获得的技能: Probability & Statistics, General Statistics, Mathematics, Probability Distribution, Regression, Linear Algebra, Bayesian Statistics, Experiment, Econometrics, Machine Learning, Basic Descriptive Statistics, Biostatistics, Calculus, Statistical Tests, Algebra, Artificial Neural Networks, Dimensionality Reduction, Machine Learning Algorithms, Statistical Machine Learning, Communication, Correlation And Dependence, Data Analysis, Estimation, Exploratory Data Analysis, Statistical Analysis

      4.4

      (688 条评论)

      Advanced · Specialization · 3-6 Months

    • Placeholder
      IBM Skills Network

      Statistics for Data Science with Python

      您将获得的技能: General Statistics, Probability & Statistics, Data Analysis, Business Analysis, Statistical Analysis, Statistical Tests, Probability Distribution, Basic Descriptive Statistics, Correlation And Dependence, Data Visualization, Plot (Graphics), Regression, Statistical Visualization

      4.5

      (285 条评论)

      Mixed · Course · 1-3 Months

    • Placeholder
      IBM Skills Network

      IBM Data Science

      您将获得的技能: Python Programming, Data Science, Data Analysis, Data Structures, Statistical Programming, Machine Learning, Data Mining, Regression, Machine Learning Algorithms, Data Visualization, General Statistics, Basic Descriptive Statistics, SQL, Applied Machine Learning, Statistical Analysis, Computer Programming Tools, Data Analysis Software, Machine Learning Software, Software Visualization, Databases, Programming Principles, Exploratory Data Analysis, Computer Programming, Statistical Visualization, Algebra, Data Management, Database Theory, Data Visualization Software, R Programming, Statistical Machine Learning, Statistical Tests, Deep Learning, Probability & Statistics, Database Application, Extract, Transform, Load, Plot (Graphics), Devops Tools, SPSS, Estimation, Interactive Data Visualization, Algorithms, Database Administration, Geovisualization, Reinforcement Learning, Theoretical Computer Science, Big Data, Business Analysis, Computational Logic, Correlation And Dependence, Econometrics, Entrepreneurship, Marketing, Mathematical Theory & Analysis, Mathematics, Spreadsheet Software, Storytelling, Supply Chain Systems, Supply Chain and Logistics, Writing

      4.6

      (106.4k 条评论)

      Beginner · Professional Certificate · 3-6 Months

    • 免费

      Placeholder
      Duke University

      Data Science Math Skills

      您将获得的技能: Mathematics, Probability & Statistics, General Statistics, Algebra, Bayesian Statistics, Computational Logic, Data Visualization, Graph Theory, Mathematical Theory & Analysis, Plot (Graphics), Probability Distribution, Theoretical Computer Science

      4.5

      (10.9k 条评论)

      Beginner · Course · 1-3 Months

    • Placeholder
      Placeholder
      Imperial College London

      Mathematics for Machine Learning

      您将获得的技能: Mathematics, Algebra, Linear Algebra, Machine Learning, Python Programming, Probability & Statistics, General Statistics, Calculus, Computer Programming, Applied Mathematics, Mathematical Theory & Analysis, Statistical Programming, Algorithms, Dimensionality Reduction, Regression, Theoretical Computer Science, Basic Descriptive Statistics, Data Analysis, Probability Distribution, Artificial Neural Networks, Computer Graphic Techniques, Computer Graphics, Computer Networking, Deep Learning, Differential Equations, Experiment, Machine Learning Algorithms, Network Model

      4.6

      (13.5k 条评论)

      Beginner · Specialization · 3-6 Months

    • Placeholder

      免费

      Placeholder
      Eindhoven University of Technology

      Improving your statistical inferences

      您将获得的技能: Probability & Statistics, Statistical Tests, General Statistics, R Programming, Statistical Programming, Bayesian Statistics, Data Analysis, Probability Distribution, Statistical Analysis, Bayesian Network, Business Analysis, Experiment, Machine Learning

      4.9

      (750 条评论)

      Intermediate · Course · 1-3 Months

    • Placeholder
      Placeholder
      Johns Hopkins University

      Data Science: Statistics and Machine Learning

      您将获得的技能: R Programming, Statistical Programming, General Statistics, Statistical Analysis, Data Analysis, Machine Learning, Probability & Statistics, Statistical Tests, Data Science, Machine Learning Software, Basic Descriptive Statistics, Bayesian Statistics, Correlation And Dependence, Econometrics, Estimation, Linear Algebra, Regression, Exploratory Data Analysis, Theoretical Computer Science, Data Visualization, Interactive Data Visualization, Natural Language Processing, Probability Distribution, Plot (Graphics), Machine Learning Algorithms, Algorithms, Applied Machine Learning, Business Analysis

      4.4

      (7k 条评论)

      Intermediate · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      University of Michigan

      Django for Everybody

      您将获得的技能: Web Development, Django (Web Framework), Other Web Frameworks, Computer Programming, Javascript, Computer Science, Databases, HTML and CSS, Information Technology, SQL, Web Development Tools, Advertising, Application Development, Communication, Data Management, Data Model, Marketing, Programming Principles, Python Programming, Software Architecture, Software Engineering, Statistical Programming, Theoretical Computer Science, Web Design

      4.7

      (2.2k 条评论)

      Intermediate · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      Johns Hopkins University

      Data Science

      您将获得的技能: R Programming, Data Analysis, Statistical Programming, Data Science, General Statistics, Statistical Analysis, Probability & Statistics, Statistical Tests, Machine Learning, Exploratory Data Analysis, Basic Descriptive Statistics, Machine Learning Software, Linear Algebra, Bayesian Statistics, Correlation And Dependence, Econometrics, Estimation, Regression, Data Visualization Software, Software Visualization, Statistical Visualization, Probability Distribution, Theoretical Computer Science, Data Visualization, Interactive Data Visualization, Natural Language Processing, Plot (Graphics), Big Data, Computer Programming, Computer Programming Tools, Data Structures, Experiment, Machine Learning Algorithms, Software Engineering Tools, Spreadsheet Software, Algorithms, Application Development, Applied Machine Learning, Business Analysis, Data Management, Extract, Transform, Load, Knitr

      4.5

      (49.9k 条评论)

      Beginner · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      SAS

      SAS Programmer

      您将获得的技能: SAS (Software), Statistical Programming, Data Analysis, Business Psychology, Data Management, Databases, Entrepreneurship, Leadership and Management, Organizational Development, SQL

      4.8

      (3.1k 条评论)

      Beginner · Professional Certificate · 3-6 Months

    与 statistics for data science 相关的搜索

    statistics for data science with python
    advanced statistics for data science
    statistics for genomic data science
    probability & statistics for machine learning & data science
    statistical modeling for data science applications
    statistical inference for estimation in data science
    advanced linear models for data science 2: statistical linear models
    1234…84

    总之,这是我们最受欢迎的 statistics for data science 门课程中的 10 门

    • Introduction to Statistics: Stanford University
    • Statistics with Python: University of Michigan
    • Advanced Statistics for Data Science: Johns Hopkins University
    • Statistics for Data Science with Python: IBM Skills Network
    • IBM Data Science: IBM Skills Network
    • Data Science Math Skills: Duke University
    • Mathematics for Machine Learning: Imperial College London
    • Improving your statistical inferences: Eindhoven University of Technology
    • Data Science: Statistics and Machine Learning: Johns Hopkins University
    • Django for Everybody: University of Michigan

    关于 数据科学所需的统计学 的常见问题

    • Statistics for data science refers to the mathematical analysis used to sort, analyze, interpret, and present data. It includes concepts like probability distribution, regression, and over or under-sampling. Descriptive statistics organizes data based on characteristics of the data set, such as normal distribution, central tendency, variability, and standard deviation. Inferential statistics incorporates the use of probability theory to infer characteristics of the data set.‎

    • Learning statistics for data science can lead to career opportunities in data science and related fields. As organizations increasingly rely on data to make decisions, they tend to seek out analysts who understand how to work with data and present it to stakeholders. Learning statistics for data science can also provide a good salary. As of 2020, the median pay for computer and information research scientists in the US is $122,840 and the job market remains positive, according to the Bureau of Labor Statistics. Mathematicians and statisticians have a similar job outlook and a median salary of $92,030 per year.‎

    • Data analysis, data architects, data scientists, and information officers typically use statistics for data science in their regular work. Data science is a broad field, and statistics can be useful in other roles that require analyzing and presenting data. This includes data warehouse analysts, data visualization developers, database managers, and machine learning engineers. Additional related fields include financial analysts, teachers, and researchers working for universities and corporate settings.‎

    • Through online courses, you can learn the fundamentals of statistics for data science, including the theories and techniques statisticians use in their work. Some courses explore fundamental concepts like Bayes’ Theorem and probability theory. Others present methods for calculating and evaluating data sets. You can brush up on your knowledge of programs statisticians use, like Excel and Python, or examine the application of statistics specific fields.‎

    此常见问题解答内容仅供参考。建议学生多做研究,确保所追求的课程和其他证书符合他们的个人、专业和财务目标。
    其他可浏览的主题
    Placeholder
    艺术与人文
    338 课程
    Placeholder
    商务
    1095 课程
    Placeholder
    计算机科学
    668 课程
    Placeholder
    数据科学
    425 课程
    Placeholder
    信息技术
    145 课程
    Placeholder
    健康
    471 课程
    Placeholder
    数学和逻辑
    70 课程
    Placeholder
    个人发展
    137 课程
    Placeholder
    物理科学与工程
    413 课程
    Placeholder
    社会科学
    401 课程
    Placeholder
    语言学习
    150 课程

    Coursera Footer

    开拓职业生涯或促进职业发展

    • Google 数据分析师
    • Google 数字营销和电子商务专业证书
    • Google IT 自动化与 Python 专业证书
    • Google IT 支持
    • Google 项目管理
    • Google UX 设计
    • 备考 Google Cloud 认证:云架构师
    • IBM Cybersecurity Analyst
    • IBM 数据分析师
    • IBM 数据工程
    • IBM 数据科学
    • IBM 全栈云开发人员
    • IBM Machine Learning
    • 直觉簿记
    • Meta Front-End Developer
    • DeepLearning.AI TensorFlow 开发者专业证书
    • SAS 程序员专业证书
    • 开启您的职业生涯
    • 准备证书
    • 开拓职业生涯
    • 如何识别 Python 语法错误
    • 如何捕捉 Python 异常
    • 查看所有编程教程

    热门课程和证书

    • 免费课程
    • 人工智能课程
    • 区块链课程
    • 计算机科学课程
    • Cursos Gratis
    • 网络安全课程
    • 数据分析课程
    • 数据科学课程
    • 英语口语课程
    • 全栈式网络开发课程
    • Google 课程
    • 人力资源课程
    • IT 课程
    • 学习英语课程
    • Microsoft Excel 课程
    • 产品管理课程
    • 项目管理课程
    • Python 课程
    • SQL 课程
    • 敏捷证书
    • CAPM 证书
    • CompTIA A+ 证书
    • 数据分析证书
    • Scrum Master 证书
    • 查看全部课程

    热门收藏和文章

    • 您可以在一天内完成的免费在线课程
    • 热门免费课程
    • 商务工作
    • 网络安全工作
    • 入门 IT 工作
    • 数据分析师面试问题
    • 数据分析工程
    • 如何成为数据分析师
    • 如何成为项目经理
    • IT 技能
    • 项目经理面试问题
    • Python 程序设计技能
    • 面试中的优势和劣势
    • 数据分析师是做什么的
    • 软件工程师是做什么的
    • 什么是数据工程师
    • 什么是数据科学家
    • 什么是产品设计师
    • 什么是 Scrum Master
    • 什么是用户体验研究员
    • 如何获得 PMP 证书
    • PMI 证书
    • 热门网络安全证书
    • 热门 SQL 证书
    • 阅读所有 Coursera 文章

    在线获得学位或证书

    • Google 专业证书
    • 专业证书
    • 查看所有证书
    • 学士学位
    • 硕士学位
    • Computer Science Degrees
    • Data Science Degrees
    • MBA 和商学学位
    • 数据分析师学位
    • 公共卫生学位
    • 社会科学学位
    • 管理学位
    • 文学学位与理学学位
    • 什么是学士学位?
    • 要培养的 11 个良好的学习习惯
    • 如何撰写推荐信
    • 拥有商学学位可以从事的 10 个热门工作
    • 计算机科学硕士值得读吗?
    • 查看所有学位计划
    • Coursera 印度
    • Coursera 英国
    • Coursera 墨西哥

    Coursera

    • 关于
    • 我们提供的内容
    • 管理团队
    • 工作机会
    • 目录
    • Coursera Plus
    • 专业证书
    • MasterTrack® 证书
    • 学位
    • 企业版
    • 政府版
    • 面向校园
    • 成为合作伙伴
    • 新冠疫情响应

    社区

    • 学生
    • 合作伙伴
    • Beta 测试人员
    • 专业译员
    • 博客
    • 技术博客
    • 教学中心

    更多

    • 媒体
    • 投资者
    • 条款
    • 隐私
    • 帮助
    • 内容访问
    • 联系我们
    • 文章
    • 目录
    • 附属公司
    • 现代奴隶制声明
    随时随地学习
    Placeholder
    Placeholder
    Placeholder
    © 2023 Coursera Inc.保留所有权利。
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder