Chevron Left
返回到 序列模型

学生对 deeplearning.ai 提供的 序列模型 的评价和反馈

4.8
29,056 个评分

课程概述

In the fifth course of the Deep Learning Specialization, you will become familiar with sequence models and their exciting applications such as speech recognition, music synthesis, chatbots, machine translation, natural language processing (NLP), and more. By the end, you will be able to build and train Recurrent Neural Networks (RNNs) and commonly-used variants such as GRUs and LSTMs; apply RNNs to Character-level Language Modeling; gain experience with natural language processing and Word Embeddings; and use HuggingFace tokenizers and transformer models to solve different NLP tasks such as NER and Question Answering. The Deep Learning Specialization is a foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to take the definitive step in the world of AI by helping you gain the knowledge and skills to level up your career....

热门审阅

AM

Jun 30, 2019

The course is very good and has taught me the all the important concepts required to build a sequence model. The assignments are also very neatly and precisely designed for the real world application.

WK

Mar 13, 2018

I was really happy because I could learn deep learning from Andrew Ng.

The lectures were fantastic and amazing.

I was able to catch really important concepts of sequence models.

Thanks a lot!

筛选依据:

2776 - 序列模型 的 2800 个评论(共 3,484 个)

创建者 Faraz H

Mar 13, 2019

I am overwhelmed by too much material. Additionally Tensorflow and Keras syntax is not very elegant or coherent as they are such high-level languages. I learnt a lot at a high-level overview in this course, but my fundamental understanding was consolidated in the previous 4 courses.

创建者 BlueBird

Sep 7, 2019

Finally, the last course was completed. For me, this course is very difficult, because the content of the course is somewhat obscure and difficult to understand. But I learned some basic knowledge about Natural Language Processing and Speech Recognition through this course. Thanks!

创建者 Kang C

Nov 10, 2022

Insightful course though I wish the course would be longer and more spelled out, since sequence models are quite complicated and harder to understand. Instructions on programming exercises are also sometimes pretty unclear, especially in later weeks. Still, overall a great course.

创建者 Carolina F

Jan 8, 2020

This is my third course in Deep Learning, the contents and pace of learning are great, they provide a good level of understanding in the subject. The notebooks have bugs and I wasted a lot of times making them work, thus they could be improved to use that time actually learning.

创建者 Osman F K

Dec 24, 2019

The concepts presented in this course were advanced enough. Yet, the assignments did not require much effort and thinking, which in my opinion is hurting the learning process. If students do not struggle enough with the course, they tend to forget the material they have learned.

创建者 Othman B

Feb 22, 2018

Very interesting courses. I take this as a basis for future applications. I only regret that the exercises are too guided. I can't pretend to be able to accomplish a project in machine learning :-(

I would recommend also to note all the references to the papers, they are helpful.

创建者 Cosmin D

Sep 26, 2018

Great content, assignments are fun and reasonably instructive (although they contain the occasional error and the video editing for the lecture content seems a bit rushed at times). I would recommend this course as an introduction to recurrent neural networks and related ideas.

创建者 Ernest W

Jul 8, 2021

Course is about recurrent neural networks, natural language processing and basics of speech recognition. Valuable content and great delivery by the author expect the final week where it's difficult to understand the transformers network and the related programming assignment.

创建者 Justin P

Apr 19, 2020

Very informative and well taught course on sequence models. The amount of content and pacing was just right as not to be overwhelmingly complicated. There are a few bugs here and there in the programming exercise which can lead to a lot of headaches but overall a good course!

创建者 Сергей С

Aug 19, 2020

Great course, with interesting programming assignments, but still, I couldn't catch intuition about GRU and LSTM nature (I understood its pupuse and equations but couldn't get why exactly THAT combination of equations is necessary to allow RNN learn long term dependencies).

创建者 Михаил М

Jun 11, 2018

Week 3: quite a complected network was used for trigger word detection; however, it is not clear why exactly this architecture was used; specific order of dropout, batchnorm and GRU seems to be a pure magic; at least, a few words why this combination is picked are needed.

创建者 Elena J

Sep 28, 2020

very good hands-on course. Yet I wished in the programming assignments, it was stated clearer, whether the implemented code is for understanding purposes only (and hence being the reason to be implemented) or is still mandatory even when working within a library (keras).

创建者 Stephen S

Feb 17, 2018

Course content is excellent, I would have given 5 stars, if the Programming assignments wouldn't have bugs. Fortunately people in forum help out with solving issues with assignments. I believe it's due to the short time frame the course is online and bugs get corrected.

创建者 Viliam R

Mar 24, 2018

While this was the most relevant course for me, I missed how it was focused on "helper functions" instead of core RNN concepts. While I feel like I understand concepts like the Bleu score, I would definitely need to spend more time to fully grasp the RNN architecture.

创建者 George B

Jul 19, 2021

Good introduction into NLP and Sequence models in general. Too many things are done for you in order to fit this course into 4 weeks. I felt like I could not say that I built a system doing something. It was pre-built, while I just filled in some portions of code.

创建者 Jeff M

Oct 4, 2020

Very nicely put together, takes a difficult topic and gives you just enough to get your head around it. Only thing keeping it from 5 stars is that a few times it was more difficult to figure out what the auto grader wanted than what was needed to complete the topic

创建者 Alexander

Jan 24, 2019

Would have been nice to get more extensive training in Keras en Tensorflow because programming excercies were somewhat too pre-compiled at times or other times difficult to code because of scarse knowledge of these packets. Otherwise great lecture material as usual

创建者 Vidar I

Mar 22, 2018

This was a great course and teaches you everything you need to know about RNN to get started doing your own research. With background in economics and finance it would have been nice to have one small assignment with time series data. Beside that, awesome course :)

创建者 Oumayma G

Nov 2, 2020

Thank you for this course. The content is very throughout and yet explained simply. I had a hard time with understanding the attention model, the explanation in the course is not enough, but after all, it is a complicated architecture. The labs help. Thank you.

创建者 Sourish D

May 28, 2018

The grader has some bug.Even with correct output and with no bug in the code, it gives incorrect grading. Firstly the criteria to pass is so stiff(80% means to pass for every function).Secondly the bug in grading function grades incorrect for correct codes.

创建者 Sherif M

May 3, 2019

Andrew Ng does a great job in introducing Sequence models in this course. However, I have the feeling the theory behind all the concepts falls short. There are just too many different subtopics being covered instead of focusing on the main concepts of RNNs.

创建者 Harish K L

Oct 15, 2020

Compared to the previous 4 courses in this specialization, I felt this course a bit less on details. It may be just me not having the required level of understanding. It just felt like I could've used a little more details. Andrew is awesome as always.

创建者 Daniel S

Aug 30, 2020

The programming assignments were pretty hard this time. I think, Andrew should spend more time to explain the concepts in the video lectures. Took me a while to get this stuff since it is a little bit more abstract than the previous specializations..

创建者 Endre S

Sep 18, 2018

This last course of the series while still being excellent, it had a few minor issues in the assignments and was quite hard compared to the previous four. Nevertheless, I still learned a lot from it and I am really grateful for it being available.

创建者 Roberto A

Aug 6, 2018

Very interesting and well taught course. The only disappointment is that it focuses almost completely on NLP. I would have much preferred working on other topics too, like for example time series with LSTM, which instead didn't even get mentioned.