Diabetes Prediction With Pyspark MLLIB
17 个评分

Learn to Build and Train Logistic Regression Classifier using Pyspark MLLIB
Learn to set up Pyspark on the Google Colab Environment
Learn to work with Pyspark Dataframe
17 个评分
Learn to Build and Train Logistic Regression Classifier using Pyspark MLLIB
Learn to set up Pyspark on the Google Colab Environment
Learn to work with Pyspark Dataframe
In this 1 hour long project-based course, you will learn to build a logistic regression model using Pyspark MLLIB to classify patients as either diabetic or non-diabetic. We will use the popular Pima Indian Diabetes data set. Our goal is to use a simple logistic regression classifier from the pyspark Machine learning library for diabetes classification. We will be carrying out the entire project on the Google Colab environment with the installation of Pyspark.You will need a free Gmail account to complete this project. Please be aware of the fact that the dataset and the model in this project, can not be used in the real-life. We are only using this data for the educational purpose. By the end of this project, you will be able to build the logistic regression classifier using Pyspark MLlib to classify between the diabetic and nondiabetic patients.You will also be able to setup and work with Pyspark on Google colab environment. Additionally, you will also be able to clean and prepare data for analysis. You should be familiar with the Python Programming language and you should have a theoretical understanding of the Logistic Regression algorithm. You will need a free Gmail account to complete this project. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Data Science
Machine Learning
Python Programming
Google colab
PySpark
在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:
Introduction & Install Dependencies
Clone and Explore Dataset
Data Cleaning and Preparation
Correlation analysis and Feature Selection
Split Dataset and Build the Logistic Regression Model
Evaluate and Save the model
Model Prediction on a new set of unlabelled data
您的工作空间就是浏览器中的云桌面,无需下载
在分屏视频中,您的授课教师会为您提供分步指导
由 BA 提供
Nov 2, 2022Solid introduction to pyspark MLLib but left much would have liked to see more model evaluation and comparison to at least another model.
由 PI 提供
Oct 16, 2021Thank You for making course so simple to learn how to develop prediction model
购买指导项目后,您将获得完成指导项目所需的一切,包括通过 Web 浏览器访问云桌面工作空间,工作空间中包含您需要了解的文件和软件,以及特定领域的专家提供的分步视频说明。
由于您的工作空间包含适合笔记本电脑或台式计算机使用的云桌面,因此指导项目不在移动设备上提供。
指导项目授课教师是特定领域的专家,他们在项目的技能、工具或领域方面经验丰富,并且热衷于分享自己的知识以影响全球数百万的学生。
您可以从指导项目中下载并保留您创建的任何文件。为此,您可以在访问云桌面时使用‘文件浏览器’功能。
指导项目不符合退款条件。请查看我们完整的退款政策。
指导项目不提供助学金。
指导项目不支持旁听。
您可在页面顶部点按此指导项目的经验级别,查看任何知识先决条件。对于指导项目的每个级别,您的授课教师会逐步为您提供指导。
是,您可以在浏览器的云桌面中获得完成指导项目所需的一切。
您可以直接在浏览器中于分屏环境下完成任务,以此从做中学。在屏幕的左侧,您将在工作空间中完成任务。在屏幕的右侧,您将看到有授课教师逐步指导您完成项目。
还有其他问题吗?请访问 学生帮助中心。