Interpretable machine learning applications: Part 3

提供方
在此指导项目中,您将:
2 hours
中级
无需下载
分屏视频
英语(English)
仅限桌面

In this 50 minutes long project-based course, you will learn how to apply a specific explanation technique and algorithm for predictions (classifications) being made by inherently complex machine learning models such as artificial neural networks. The explanation technique and algorithm is based on the retrieval of similar cases with those individuals for which we wish to provide explanations. Since this explanation technique is model agnostic and treats the predictions model as a 'black-box', the guided project can be useful for decision makers within business environments, e.g., loan officers at a bank, and public organizations interested in using trusted machine learning applications for automating, or informing, decision making processes. The main learning objectives are as follows: Learning objective 1: You will be able to define, train and evaluate an artificial neural network (Sequential model) based classifier  by using keras as API for TensorFlow. The pediction model will be trained and tested with the HELOC dataset for approved and rejected mortgage applications. Learning objective 2: You will be able to generate explanations based on similar profiles for a mortgage applicant predicted either as of "Good" or "Bad" risk performance. Learning objective 3: you will be able to generate contrastive explanations based on feature and pertinent negative values, i.e., what an applicant should change in order to turn a "rejected" application to an "approved" one.

您要培养的技能

  • Training and testing an Artificial Neural Network

  • Using the Protodash algorithm

  • Using keras as API for TensorFlow

  • Normalization of data prior to training a prediction model

  • Explanations based on similarity measurements

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

常见问题