Sentiment Analysis with Deep Learning using BERT

4.5

373 个评分

提供方

12,887 人已注册

在此指导项目中,您将:
120 minutes
中级
无需下载
分屏视频
英语(English)
仅限桌面

In this 2-hour long project, you will learn how to analyze a dataset for sentiment analysis. You will learn how to read in a PyTorch BERT model, and adjust the architecture for multi-class classification. You will learn how to adjust an optimizer and scheduler for ideal training and performance. In fine-tuning this model, you will learn how to design a train and evaluate loop to monitor model performance as it trains, including saving and loading models. Finally, you will build a Sentiment Analysis model that leverages BERT's large-scale language knowledge. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培养的技能

  • Natural Language Processing

  • Deep Learning

  • Machine Learning

  • Sentiment Analysis

  • BERT

分步进行学习

在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:

指导项目工作原理

您的工作空间就是浏览器中的云桌面,无需下载

在分屏视频中,您的授课教师会为您提供分步指导

授课教师

审阅

来自SENTIMENT ANALYSIS WITH DEEP LEARNING USING BERT的热门评论

查看所有评论

常见问题