Chevron Left
返回到 回归模型

学生对 约翰霍普金斯大学 提供的 回归模型 的评价和反馈

3,314 个评分


Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist’s toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated. The course will cover modern thinking on model selection and novel uses of regression models including scatterplot smoothing....



Dec 16, 2017

Excellent course that is jam-packed with useful material! It is quite challenging and gives a thorough grounding in how to approach the process of selecting a linear regression model for a data set.


Mar 10, 2019

This module was the maximum. I learned how powerful the use of Regression Models techniques in Data Science analysis is. I thank Professor Brian Caffo for sharing his knowledge with us. Thank you!


1 - 回归模型 的 25 个评论(共 551 个)


Nov 18, 2017

创建者 Roman

Mar 10, 2019

创建者 Nicholas A

Dec 22, 2017

创建者 George C

Apr 30, 2018

创建者 Ricardo M

Jan 30, 2018

创建者 Johnny C

Sep 25, 2018

创建者 cleoag1

Oct 29, 2017

创建者 Deleted A

Mar 10, 2019

创建者 Jeffrey G

Oct 18, 2017

创建者 Joana P

Jan 26, 2018

创建者 Steffen R

Oct 6, 2018

创建者 Liew W P

Aug 29, 2016


Sep 22, 2019

创建者 Matt S

Feb 24, 2019

创建者 Siddharth C

Aug 19, 2020

创建者 Gayathri N

Sep 1, 2020

创建者 Paul K

Mar 28, 2017

创建者 ritu b

Feb 6, 2016

创建者 louis d

Jun 10, 2016

创建者 Martin L

Jul 26, 2017

创建者 Matt G

Feb 15, 2016

创建者 Eric T

Feb 21, 2017

创建者 Tejus

Oct 24, 2020

创建者 Benjamin S

Jan 12, 2018

创建者 Manuel X D

Feb 8, 2016